CONVERT CARTESIAN COORDINATES TO POLAR COORDINATE

 

In mathematics, a Cartesian coordinate system is a coordinate system that specifies each point uniquely in a plane by a set of numeric points.

Cartesian Coordinates is represented by (x,y).

In mathematics, the polar coordinate system is a two-dimensional coordinate system in which each point on a plane is determined by a distance from a reference point known as radius and an angle from a reference direction known as theta or simply angle.

Polar Coordinates system is represented by (r,θ).

For the negative value of r in polar coordinates, what to do? Watch the given below youtube video to cover it.

https://www.youtube.com/watch?v=kNANYzuOUpA
Fig: Polar Coordinates

Check this website for more knowledge: https://openstax.org/books/calculus-volume-2/pages/7-3-polar-coordinates

C++ PROGRAM :

DEFINE TWO CLASSES POLAR AND RECTANGLE REPRESENT POINTS IN POLAR AND RECTANGULAR SYSTEM. USE SUITABLE MEMBER FUNCTIONS TO CONVERT FROM ONE SYSTEM TO ANOTHER. WRITE A PROGRAM TO TEST ABOVE CLASSES.


#include <iostream>
#include <math.h>
// USING STD:: WHEN DIRECTLY IO FUNCTIONS ARE NOT WORKED.
class polar;
class rectangle
{
	int x,y;
public:
	rectangle(int x=0, int y=0);
	polar topolar();
	void display();
};

class polar{
	int r,theta;
public:
	polar(int r=0, int theta=0);
	rectangle torectangle();
	void display();
};

rectangle::rectangle(int x, int y){
	this->x=x;
	this->y=y;
}

polar rectangle::topolar()
{
	return polar(sqrt(x*x + y*y),tan(y/x));
}

void rectangle::display()
{
	std::cout<<"( "<<x<<", "<<y<<")";
}


polar::polar(int r, int theta)
{
	this->r=r;
	this->theta=theta;
}
rectangle polar::torectangle()
{
	return rectangle(r*cos(theta), r*sin(theta));
}
void polar::display()
{
	std::cout<<"( "<<r<<", "<<theta<<")";
}

int main()
{
int x, y, r, theta;
std::cout<<"Enter value in Rectangle co ordinates "<<std::endl<<"X= ";
std::cin>>x; std::cout<<"Y= "; std::cin>>y;
std::cout<<std::endl<<"Enter value in polar coordinates "<<std::endl<<"R= "; 
std::cin>>r; std::cout<<"Theta= ";
std::cin>>theta;

rectangle point1(x,y);
polar point2(r,theta);
std::cout<<"Point 1: \nIn Rectangle co ordinate is: ";
point1.display();
std::cout<<"In polar co ordinate is ";
point1.topolar().display();

std::cout<<"\n\nPoint 2: \nIn Rectangle co ordinate is: ";
point2.torectangle().display();

std::cout<<"\nIn polar co-ordinate is ";
point2.display();

}

INPUT - OUTPUT :


Enter value in Rectangle co ordinates 
X= 5
Y= 6

Enter value in polar coordinates 
R= 5
Theta= 45
Point 1: 
In Rectangle co ordinate is: ( 5, 6)In polar co ordinate is ( 7, 1)

Point 2: 
In Rectangle co ordinate is: ( 2, 4)
In polar co-ordinate is ( 5, 45)

FAQ:

1> How do you convert from Polar to Rectangular?
=> To convert from Polar Coordinates (r,θ) to Cartesian Coordinates (x,y) :

x = r × cos( θ )
y = r × sin( θ )

2> How do you convert from rectangular to polar form?
=> Using Pythagoras Theorem, To convert from Cartesian Coordinates (x,y) to Polar Coordinates (r,θ).

Step 1: Square both sides of r = 5 and substitute for r^2.
r^2 = x^2 + y^2

Step 2: Determine the value of tan θ and equate this to y/ x .

tan θ = y/x

3> What is Polar and Cartesian coordinate?

Using Rectangular coordinates, or cartesian coordinates we mark a point by how far along and how far up it is.

fig: Cartesian coordinate diagram

Using Polar Coordinates we mark a point by how far away, and what angle it is.

fig: Polar coordinate diagram
fig: Polar and Cartesian coordinate diagram

YOU MIGHT LIKE:

https://www.shoutcoders.com/c-constructor-destructor-shout-coders/
https://www.youtube.com/watch?v=kNANYzuOUpA

Comments

Popular posts from this blog

SAME NAME IN CLASS METHOD AND CONSTRUCTOR

SQUARE ROOT OF A NUMBER